Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Epilepsy Res ; 200: 107296, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219422

RESUMO

Mutations within the Kv7.2 and Kv7.3 genes are well described causes for genetic childhood epilepsies. Knowledge on these channels in acquired focal epilepsy, especially in mesial temporal lobe epilepsy (mTLE), however, is scarce. Here, we used the rat pilocarpine model of drug-resistant mTLE to elucidate both expression and function by quantitative polymerase-chain reaction, immunohistochemistry, and electrophysiology, respectively. We found transcriptional downregulation of Kv7.2 and Kv7.3 as well as reduced Kv7.2 expression in epileptic CA1. Consequences were altered synaptic transmission, hyperexcitability which consisted of epileptiform afterpotentials, and increased susceptibility to acute GABAergic disinhibition. Importantly, blocking Kv7 channels with XE991 increased hyperexcitability in control tissue, but not in chronically epileptic tissue suggesting that the Kv7 deficit had precluded XE991 effects in this tissue. Conversely, XE991 resulted in comparable reduction of the paired-pulse ratio in both experimental groups implying preserved presynaptic Kv7.2 function of Schaffer collateral terminals. Consistent with Kv7.2/7.3 downregulation, the Kv7.3 channel opener ß-hydroxybutyrate failed to mitigate hyperexcitability. Our findings demonstrate that compromised Kv7 function is not only relevant in genetic epilepsy, but also in acquired focal epilepsy. Moreover, they help explain reduced anti-seizure efficacy of Kv7 channel openers in drug-resistant epilepsy.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Ratos , Animais , Criança , Pilocarpina/toxicidade , Epilepsia do Lobo Temporal/induzido quimicamente , Regulação para Baixo , Potenciais da Membrana
2.
Brain Res ; 1823: 148672, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956748

RESUMO

Deep brain stimulation (DBS) of the globus pallidus internus (entopeduncular nucleus, EPN, in rodents) is important for the treatment of drug-refractory dystonia. The pathophysiology of this movement disorder and the mechanisms of DBS are largely unknown. Insights into the mechanisms of DBS in animal models of dystonia can be helpful for optimization of DBS and add-on therapeutics. We recently found that short-term EPN-DBS with 130 Hz (50 µA, 60 µs) for 3 h improved dystonia in dtsz hamsters and reduced spontaneous excitatory cortico-striatal activity in brain slices of this model, indicating fast effects on synaptic plasticity. Therefore, in the present study, we examined if these effects are related to changes of c-Fos, a marker of neuronal activity, in brains derived from dtsz hamsters after these short-term DBS or sham stimulations. After DBS vs. sham, c-Fos intensity was increased around the electrode, but the number of c-Fos+ cells was not altered within the whole EPN and projection areas (habenula, thalamus). DBS did not induce changes in striatal and cortical c-Fos+ cells as GABAergic (GAD67+ and parvalbumin-reactive) neurons in motor cortex and striatum. Unexpectedly, c-Fos+ cells were decreased in deep cerebellar nuclei (DCN) after DBS, suggesting that cerebellar changes may be involved in antidystonic effects already during short-term DBS. However, the present results do not exclude functional changes within the basal ganglia-thalamo-cortical network, which will be further investigated by long-term EPN stimulations. The present study indicates that the cerebellum deserves attention in ongoing examinations on the mechanisms of DBS in dystonia.


Assuntos
Estimulação Encefálica Profunda , Distonia , Cricetinae , Animais , Distonia/terapia , Núcleo Entopeduncular , Gânglios da Base/metabolismo , Globo Pálido , Modelos Animais de Doenças , Cerebelo
3.
J Neural Eng ; 20(6)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37988747

RESUMO

Objective. Constructing a theoretical framework to improve deep brain stimulation (DBS) based on the neuronal spatiotemporal patterns of the stimulation-affected areas constitutes a primary target.Approach. We develop a large-scale biophysical network, paired with a realistic volume conductor model, to estimate theoretically efficacious stimulation protocols. Based on previously published anatomically defined structural connectivity, a biophysical basal ganglia-thalamo-cortical neuronal network is constructed using Hodgkin-Huxley dynamics. We define a new biomarker describing the thalamic spatiotemporal activity as a ratio of spiking vs. burst firing. The per cent activation of the different pathways is adapted in the simulation to minimise the differences of the biomarker with respect to its value under healthy conditions.Main results.This neuronal network reproduces spatiotemporal patterns that emerge in Parkinson's disease. Simulations of the fibre per cent activation for the defined biomarker propose desensitisation of pallido-thalamic synaptic efficacy, induced by high-frequency signals, as one possible crucial mechanism for DBS action. Based on this activation, we define both an optimal electrode position and stimulation protocol using pathway activation modelling.Significance. A key advantage of this research is that it combines different approaches, i.e. the spatiotemporal pattern with the electric field and axonal response modelling, to compute the optimal DBS protocol. By correlating the inherent network dynamics with the activation of white matter fibres, we obtain new insights into the DBS therapeutic action.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Estimulação Encefálica Profunda/métodos , Gânglios da Base/fisiologia , Doença de Parkinson/terapia , Tálamo/fisiologia , Biomarcadores
4.
Pflugers Arch ; 476(2): 243-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993748

RESUMO

Motility of detrusor smooth muscle includes adrenergic relaxation and cholinergic contraction. Since the latter may be deregulated in overactive bladder (OAB) pathophysiology, anticholinergics are the standard therapy but occasionally less tolerated due to side effects such as dry mouth and constipation. ß3 adrenoceptor agonists also alleviate OAB symptoms by relaxing the detrusor muscle. Their age dependence, however, is far from understood. To address this issue, we induced contractions with KCl (60 mM) and carbachol (from 10 nM to 100 µM) in the presence of the ß3 adrenoceptor agonist CL316,243 (from 0.1 to 10 µM) in both human and rat muscle strips. Our results confirmed that both contractions were attenuated by ß3 adrenoceptor activation in both species, but with differing age dependence. In humans, specimens from mid-life subjects showed a significantly more pronounced effect of CL316,243 in attenuating carbachol-induced contractions than those from aged subjects (Cohen's d of maximal attenuation: 1.82 in mid-life versus 0.13 in aged) without altering EC50. Conversely, attenuation of KCl responses by CL316,243 increased during ageing (Spearman correlation coefficient = -0.584, P<0.01). In rats, both KCl- and carbachol-induced contractions were significantly more attenuated by CL316,243 in samples from adolescent as compared to aged samples. Immunohistochemistry in human detrusor sections proved ß3 adrenoreceptor abundance to remain unaltered during ageing. In conclusion, our findings suggest differential age-dependent changes in human ß3 adrenoceptor-dependent attenuation of detrusor contraction in terms of electromechanical versus pharmacomechanical coupling; they may help understand the differential responsiveness of OAB patients to ß3 agents.


Assuntos
Dioxóis , Bexiga Urinária Hiperativa , Bexiga Urinária , Adolescente , Humanos , Ratos , Animais , Idoso , Carbacol/farmacologia , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Músculo Liso , Bexiga Urinária Hiperativa/tratamento farmacológico , Receptores Adrenérgicos , Contração Muscular
5.
Pflugers Arch ; 475(10): 1133-1147, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37530804

RESUMO

Deep brain stimulation (DBS), a treatment for modulating the abnormal central neuronal circuitry, has become the standard of care nowadays and is sometimes the only option to reduce symptoms of movement disorders such as dystonia. However, on the one hand, there are still open questions regarding the pathomechanisms of dystonia and, on the other hand, the mechanisms of DBS on neuronal circuitry. That lack of knowledge limits the therapeutic effect and makes it hard to predict the outcome of DBS for individual dystonia patients. Finding electrophysiological biomarkers seems to be a promising option to enable adapted individualised DBS treatment. However, biomarker search studies cannot be conducted on patients on a large scale and experimental approaches with animal models of dystonia are needed. In this review, physiological findings of deep brain stimulation studies in humans and animal models of dystonia are summarised and the current pathophysiological concepts of dystonia are discussed.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Animais , Humanos , Distonia/terapia , Distúrbios Distônicos/terapia , Fenômenos Eletrofisiológicos , Modelos Animais
6.
Biology (Basel) ; 12(7)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37508461

RESUMO

Several cues for a directional migration of colorectal cancer cells were identified as being crucial in tumor progression. However, galvanotaxis, the directional migration in direct-current electrical fields, has not been investigated so far. Therefore, we asked whether direct-current electrical fields could be used to mobilize colorectal cancer cells along field vectors. For this purpose, five patient-derived low-passage cell lines were exposed to field strengths of 150-250 V/m in vitro, and migration along the field vectors was investigated. To further study the role of voltage-gated calcium channels on galvanotaxis and intracellular signaling pathways that are associated with migration of colorectal cancer cells, the cultures were exposed to selective inhibitors. In three out of five colorectal cancer cell lines, we found a preferred cathodal migration. The cellular integrity of the cells was not impaired by exposure of the cells to the selected field strengths. Galvanotaxis was sensitive to inhibition of voltage-gated calcium channels. Furthermore, signaling pathways such as AKT and MEK, but not STAT3, were also found to contribute to galvanotaxis in our in vitro model system. Overall, we identify electrical fields as an important contributor to the directional migration of colorectal cancer cells.

7.
Neurobiol Dis ; 184: 106221, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414365

RESUMO

Autoimmune-mediated encephalitis syndromes are increasingly being recognized as important clinical entities. They need to be thought of as differential diagnosis in any patient presenting with fast-onset psychosis or psychiatric problems, memory deficits or other cognitive problems, including aphasias, as well as seizures or motor automatisms, but also rigidity, paresis, ataxia or dystonic / parkinsonian symptoms. Diagnosis including imaging and CSF search for antibodies needs to be fast, as progression of these inflammatory processes is often causing scarring of brain tissue, with hypergliosis and atrophy. As these symptoms show, the autoantibodies present in these cases appear to act within the CNS. Several of such antibodies have by now been identified such as IgG directed against NMDA-receptors, AMPA receptors, GABAA and GABAB receptors, and voltage gated potassium channels and proteins of the potassium channel complex (i.e. LGI1 and CASPR2). These are neuropil / surface antigens where antibody interaction can well be envisaged to cause dysfunction of the target protein, including internalization. Others, such as antibodies directed against GAD65 (an intracellular enzyme responsible for GABA-synthesis from glutamate), are discussed to constitute epiphenomena, but not causal agents in disease progression. This review will focus on the current knowledge of antibody interaction mechanisms, especially discussing cellular excitability changes and synaptic interactions in hippocampal and other brain networks. One challenge in this context is to find viable hypotheses for the emergence of both, hyperexcitability and seizures, and presumably reduced synaptic plasticity and underlying cognitive dysfunction.


Assuntos
Autoimunidade , Proteínas do Tecido Nervoso , Humanos , Proteínas do Tecido Nervoso/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Autoanticorpos , Convulsões , Ácido gama-Aminobutírico
8.
Biomedicines ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979676

RESUMO

(1) Background: Electrical stimulation is a promising alternative to promote bone fracture healing but with the limitation of tracking the osteogenesis progress in vivo. To overcome this issue, we present an opportunity to combine the electrical stimulation of a commercial titanium implant, which promotes osteogenesis within the fracture, with a real-time readout of the osteogenic progress by impedance sensing. This makes it possible to adjust the electrical stimulation modalities to the individual patient's fracture healing process. (2) Methods: In detail, osteogenic differentiation of several cell types was monitored under continuous or pulsatile electrical stimulation at 0.7 V AC/20 Hz for at least seven days on a titanium implant by electric cell-substrate impedance sensing (ECIS). For control, chemical induction of osteogenic differentiation was induced. (3) Results: The most significant challenge was to discriminate impedance changes caused by proliferation events from those initiated by osteogenic differentiation. This discrimination was achieved by remodeling the impedance parameter Alpha (α), which increases over time for pulsatile electrically stimulated stem cells. Boosted α-values were accompanied by an increased formation of actin stress fibers and a reduced expression of the focal adhesion kinase in the cell periphery; morphological alterations known to occur during osteogenesis. (4) Conclusions: This work provided the basis for developing an effective fracture therapy device, which can induce osteogenesis on the one hand, and would allow us to monitor the induction process on the other hand.

9.
Hepatobiliary Pancreat Dis Int ; 22(2): 190-199, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36549966

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a disease of the elderly mostly because its development from preneoplastic lesions depends on the accumulation of gene mutations and epigenetic alterations over time. How aging of non-cancerous tissues of the host affects tumor progression, however, remains largely unknown. METHODS: We took advantage of a model of accelerated aging, uncoupling protein 2-deficient (Ucp2 knockout, Ucp2 KO) mice, to investigate the growth of orthotopically transplanted Ucp2 wild-type (WT) PDAC cells (cell lines Panc02 and 6606PDA) in vivo and to study strain-dependent differences of the PDAC microenvironment. RESULTS: Measurements of tumor weights and quantification of proliferating cells indicated a significant growth advantage of Panc02 and 6606PDA cells in WT mice compared to Ucp2 KO mice. In tumors in the knockout strain, higher levels of interferon-γ mRNA despite similar numbers of tumor-infiltrating T cells were observed. 6606PDA cells triggered a stronger stromal reaction in Ucp2 KO mice than in WT animals. Accordingly, pancreatic stellate cells from Ucp2 KO mice proliferated at a higher rate than cells of the WT strain when they were incubated with conditioned media from PDAC cells. CONCLUSIONS: Ucp2 modulates PDAC microenvironment in a way that favors tumor progression and implicates an altered stromal response as one of the underlying mechanisms.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Camundongos Knockout , Microambiente Tumoral , Neoplasias Pancreáticas
10.
Neurosci Lett ; 795: 137031, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36574811

RESUMO

Anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis is an autoimmune epilepsy associated with memory deficits. Research has demonstrated that anti-NMDAR inhibit long-term potentiation, and, at the same time, lead to disinhibition in the form of epileptiform afterpotentials in the potentiated state. While both effects may give rise to the key symptoms of the disease, the molecular basis of being simultaneously inhibitory and disinhibitory is difficult to explain. Here, we explored a possible involvement of the GluN2B subunit. To this aim, we injected cerebrospinal fluid from anti-NMDAR encephalitis patients into the rat hippocampus and prepared brain slices for in vitro field potential recordings. Associational-commissural-fiber-CA3 synapses from anti-NMDAR-treated animals showed increased field potential amplitudes with concomitantly enhanced paired-pulse ratios as compared to control tissue. GluN2B inhibition by Ro25-6981 mimicked these effects in controls but had no effect in anti-NMDAR tissues indicating a presynaptic and occluding effect of anti-NMDAR. We then induced potentiation of associational-commissural-fiber-CA3 synapses, and confirmed that slices from anti-NMDAR-treated animals showed reduced potentiation and pronounced epileptiform afterpotentials. Intriguingly, both effects were absent when Ro25-6981 was added in vitro before inducing potentiation. These results indicate that GluN2B-containing NMDARs, partially expressed presynaptically, show differential sensitivity to anti-NMDAR, and that altered GluN2B function is particularly apparent in the potentiated state rather than under baseline conditions. Since GluN2B inhibition rescued the effects of anti-NMDAR in the potentiated state, this opens the possibility that at least a subgroup of patients could benefit from a GluN2B antagonist.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Ratos , Animais , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Encefalite Antirreceptor de N-Metil-D-Aspartato/tratamento farmacológico , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Potenciação de Longa Duração/fisiologia
11.
Epilepsia Open ; 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461665

RESUMO

Epilepsy is a heterogeneous disorder characterized by spontaneous seizures and behavioral comorbidities. The underlying mechanisms of seizures and epilepsy across various syndromes lead to diverse clinical presentation and features. Similarly, animal models of epilepsy arise from numerous dissimilar inciting events. Preclinical seizure and epilepsy models can be evoked through many different protocols, leaving the phenotypic reporting subject to diverse interpretations. Serendipity can also play an outsized role in uncovering novel drivers of seizures or epilepsy, with some investigators even stumbling into epilepsy research because of a new genetic cross or unintentional drug effect. The heightened emphasis on rigor and reproducibility in preclinical research, including that which is conducted for epilepsy, underscores the need for standardized phenotyping strategies. To address this goal as part of the TASK3-WG1C Working Group of the International League Against Epilepsy (ILAE)/American Epilepsy Society (AES) Joint Translational Task Force, we developed a case report form (CRF) to describe the common data elements (CDEs) necessary for the phenotyping of seizure-like behaviors in rodents. This companion manuscript describes the use of the proposed CDEs and CRF for the visual, behavioral phenotyping of seizure-like behaviors. These phenotyping CDEs and accompanying CRF can be used in parallel with video-electroencephalography (EEG) studies or as a first visual screen to determine whether a model manifests seizure-like behaviors before utilizing more specialized diagnostic tests, like video-EEG. Systematic logging of seizure-like behaviors may help identify models that could benefit from more specialized diagnostic tests to determine whether these are epileptic seizures, such as video-EEG.

12.
Front Bioeng Biotechnol ; 10: 995326, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277406

RESUMO

Under both physiological (development, regeneration) and pathological conditions (cancer metastasis), cells migrate while sensing environmental cues in the form of mechanical, chemical or electrical stimuli. In the case of bone tissue, osteoblast migration is essential in bone regeneration. Although it is known that osteoblasts respond to exogenous electric fields, the underlying mechanism of electrotactic collective movement of human osteoblasts is unclear. Here, we present a computational model that describes the osteoblast cell migration in a direct current electric field as the motion of a collection of active self-propelled particles and takes into account fluctuations in the direction of single-cell migration, finite-range cell-cell interactions, and the interaction of a cell with the external electric field. By comparing this model with in vitro experiments in which human primary osteoblasts are exposed to a direct current electric field of different field strengths, we show that cell-cell interactions and fluctuations in the migration direction promote anode-directed collective migration of osteoblasts.

13.
Neurobiol Dis ; 175: 105912, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36307031

RESUMO

During the last decades deep brain stimulation (DBS) has become an important treatment option for a variety of neurological disorders such as drug-intractable dystonia. Yet, the mechanisms of action of DBS are still largely unknown. Dystonia is a heterogenous movement disorder characterized by involuntary muscle contractions causing abnormal movements, postures, or both. The underlying pathophysiological processes remain unclear, but a dysfunction of the basal ganglia circuit is critically involved as supported by the effectiveness of DBS of the globus pallidus internus (GPi) in various types of dystonia. However, the degree of clinical improvement differs among the types of dystonia, as well as from patient to patient, and the delayed response to GPi-DBS in dystonia patients hampers the adjustment and optimization of stimulation parameters. Preclinical studies in suitable animal models can contribute decisively to detect the underlying mechanisms of DBS and biomarkers, to identify new possible stimulation targets and to optimize stimulation patterns. In this review, we give an overview of previous research on DBS in animal models of dystonia. With regard to the aims of research we discuss the opportunities and limitations concerning different available animal models of dystonia and technical challenges.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Animais , Distonia/terapia , Estimulação Encefálica Profunda/efeitos adversos , Globo Pálido , Modelos Animais , Resultado do Tratamento
14.
Life (Basel) ; 12(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36013437

RESUMO

Glioblastoma is the most common and aggressive primary brain tumor. Multiple genetic and epigenetic alterations in several major signaling pathways-including the phosphoinositide 3-kinases (PI3K)/AKT/mTOR and the Raf/MEK/ERK pathway-could be found. We therefore aimed to investigate the biological and molecular effects of small-molecule kinase inhibitors that may interfere with those pathways. For this purpose, patient-derived glioblastoma cells were challenged with dactolisib, ipatasertib, MK-2206, regorafenib, or trametinib. To determine the effects of the small-molecule kinase inhibitors, assays of cell proliferation and apoptosis and immunoblot analyses were performed. To further investigate the effects of ipatasertib on organotypic brain slices harboring glioblastoma cells, the tumor growth was estimated. In addition, the network activity in brain slices was assessed by electrophysiological field potential recordings. Multi-kinase inhibitor regorafenib and both MK-2206 and dactolisib were very effective in all preclinical tumor models, while with respect to trametinib, two cell lines were found to be highly resistant. Only in HROG05 cells, ipatasertib showed anti-tumoral effects in vitro and in organotypic brain slices. Additionally, ipatasertib diminished synchronous network activity in organotypic brain slices. Overall, our data suggest that ipatasertib was only effective in selected tumor models, while especially regorafenib and MK-2206 presented a uniform response pattern.

15.
Int J Radiat Oncol Biol Phys ; 114(1): 143-152, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533907

RESUMO

PURPOSE: Microbeam radiation therapy (MRT) has shown several advantages compared with conventional broad-beam radiation therapy in small animal models, including a better preservation of normal tissue function and improved drug delivery based on a rapidly increased vascular permeability in the target region. Normal tissue tolerance is the limiting factor in clinical radiation therapy. Knowledge of the normal tissue tolerance of organs at risk is therefore a prerequisite in evaluating any new radiation therapy approach. With an irradiation target in the thoracic cavity, the heart would be the most important organ at risk. METHODS AND MATERIALS: We used the ex vivo beating rodent heart in the Langendorff perfusion system at the synchrotron to administer microbeam irradiation (MBI) with a peak dose of 40 or 400 Gy. By continuously recording the electrocardiogram, the left ventricular pressure, and the aortic pressure before, during and after MBI, we were able to assess acute and subacute effects of MBI on electrophysiological and mechanical cardiac function. In addition, we analyzed histologic and ultrastructural sequelae caused by MBI. RESULTS: There were no significant changes in heart rate, heart rate variability, systolic increase of left ventricular pressure or aortic pressure. Moreover, the changes of heart rate, left ventricular pressure and aortic pressure by adding 10-5 mol/L norepinephrine to the perfusate, were also not significant between MBI and sham experiments. However, the rate-pressure product as a surrogate marker for maximum workload after MBI was significantly lower compared with sham-irradiated controls. On the structural level, no severe membranous, sarcomeric, mitochondrial or nuclear changes caused by MBI were detected by desmin immunohistochemistry and electron microscopy. CONCLUSIONS: With respect to acute and subacute toxicity, an MBI peak dose up to 400 Gy did not result in severe changes in cardiac electrophysiology or mechanics.


Assuntos
Roedores , Síncrotrons , Animais , Coração , Imuno-Histoquímica , Modelos Animais
16.
Life (Basel) ; 12(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35455071

RESUMO

Galvanotaxis, the migration along direct current electrical fields, may contribute to the invasion of brain cancer cells in the tumor-surrounding tissue. We hypothesized that pharmacological perturbation of the epidermal growth factor (EGF) receptor and downstream phosphatidylinositol 3-kinase (PI3K)/AKT pathway prevent galvanotactic migration. In our study, patient-derived glioblastoma and brain metastases cells were exposed to direct current electrical field conditions. Velocity and direction of migration were estimated. To determine the effects of EGF receptor antagonist afatinib and AKT inhibitor capivasertib, assays of cell proliferation, apoptosis and immunoblot analyses were performed. Both inhibitors attenuated cell proliferation in a dose-dependent manner and induced apoptosis. We found that most of the glioblastoma cells migrated preferentially in an anodal direction, while brain metastases cells were unaffected by direct current stimulations. Afatinib presented only a mild attenuation of galvanotaxis. In contrast, capivasertib abolished the migration of glioblastoma cells without genetic alterations in the PI3K/AKT pathway, but not in cells harboring PTEN mutation. In these cells, an increase in the activation of ERK1/2 may in part substitute the inhibition of the AKT pathway. Overall, our data demonstrate that glioblastoma cells migrate in the electrical field and the PI3K/AKT pathway was found to be highly involved in galvanotaxis.

17.
Cells ; 12(1)2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36611969

RESUMO

BACKGROUND: High-dose-rate radiotherapy has shown promising results with respect to normal tissue preservation. We developed an ex vivo model to study the physiological effects of experimental radiotherapy in the rodent esophageal smooth muscle. METHODS: We assessed the physiological parameters of the esophageal function in ex vivo preparations of the proximal, middle, and distal segments in the organ bath. High-dose-rate synchrotron irradiation was conducted using both the microbeam irradiation (MBI) technique with peak doses greater than 200 Gy and broadbeam irradiation (BBI) with doses ranging between 3.5-4 Gy. RESULTS: Neither MBI nor BBI affected the function of the contractile apparatus. While peak latency and maximal force change were not affected in the BBI group, and no changes were seen in the proximal esophagus segments after MBI, a significant increase in peak latency and a decrease in maximal force change was observed in the middle and distal esophageal segments. CONCLUSION: No severe changes in physiological parameters of esophageal contraction were determined after high-dose-rate radiotherapy in our model, but our results indicate a delayed esophageal function. From the clinical perspective, the observed increase in peak latency and decreased maximal force change may indicate delayed esophageal transit.


Assuntos
Esôfago , Roedores , Animais , Contração Muscular/fisiologia , Músculo Liso
18.
Biol Cybern ; 116(1): 93-116, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894291

RESUMO

A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.


Assuntos
Estimulação Encefálica Profunda , Transtornos dos Movimentos , Núcleo Subtalâmico , Gânglios da Base/fisiologia , Globo Pálido , Humanos , Transtornos dos Movimentos/terapia , Núcleo Subtalâmico/fisiologia
19.
J Neural Eng ; 18(5)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34542029

RESUMO

Context.Long-term deep brain stimulation (DBS) studies in rodents are of crucial importance for research progress in this field. However, most stimulation devices require jackets or large head-mounted systems which severely affect mobility and general welfare influencing animals' behavior.Objective.To develop a preclinical neurostimulation implant system for long-term DBS research in small animal models.Approach.We propose a low-cost dual-channel DBS implant called software defined implantable platform (STELLA) with a printed circuit board size of Ø13 × 3.3 mm, weight of 0.6 g and current consumption of 7.6µA/3.1 V combined with an epoxy resin-based encapsulation method.Main results.STELLA delivers charge-balanced and configurable current pulses with widely used commercial electrodes. Whilein vitrostudies demonstrate at least 12 weeks of error-free stimulation using a CR1225 battery, our calculations predict a battery lifetime of up to 3 years using a CR2032. Exemplary application for DBS of the subthalamic nucleus in adult rats demonstrates that fully-implanted STELLA neurostimulators are very well-tolerated over 42 days without relevant stress after the early postoperative phase resulting in normal animal behavior. Encapsulation, external control and monitoring of function proved to be feasible. Stimulation with standard parameters elicited c-Fos expression by subthalamic neurons demonstrating biologically active function of STELLA.Significance.We developed a fully implantable, scalable and reliable DBS device that meets the urgent need for reverse translational research on DBS in freely moving rodent disease models including sensitive behavioral experiments. We thus add an important technology for animal research according to 'The Principle of Humane Experimental Technique'-replacement, reduction and refinement (3R). All hardware, software and additional materials are available under an open source license.


Assuntos
Estimulação Encefálica Profunda , Núcleo Subtalâmico , Animais , Eletrodos Implantados , Neuroestimuladores Implantáveis , Ratos , Roedores , Software
20.
Neuroscience ; 467: 56-72, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048798

RESUMO

The slow afterhyperpolarizing potential (sAHP) can silence a neuron for hundreds of milliseconds. Thereby, the sAHP determines the discharge behavior of many types of neurons. In dentate granule cells (DGCs), serving as a filter into the hippocampal network, mostly tonic or adapting discharge properties have been described. As under standard whole-cell recording conditions the sAHP is inhibited, we reevaluated the intrinsic functional phenotype of DGCs and the conductances underlying the sAHP, using gramicidine-perforated patch-clamp technique. We found that in 97/113 (86%) of the DGCs, a burst of action potentials (APs) to excitation ended by a large sAHP, despite continued depolarization. This result suggests that burst-like firing is the default functional phenotype of DGCs and that sAHPs are important for it. Indeed, burst-like firing DGCs showed a significantly higher sAHP-current (IsAHP) amplitude compared to spike-frequency adapting cells (16/113 = 14%). The IsAHP was mediated by Kv7 and Kir6 channels by pharmacological inhibition using XE991 and tolbutamide, although heterogeneously among DGCs. The percent inhibition of IsAHP by these compounds also correlated with the AP number and AP burst length. Application of 100 µM nickel after XE991 and tolbutamide detected a third conductance contributing to burst-like firing and the sAHP, most likely mediated by T-type calcium channels. Lastly, medial perforant path-dentate gyrus long-term potentiation was amplified by XE991 and tolbutamide. In conclusion, the sAHP shapes intrinsic burst-like firing which, under physiological circumstances, could be controlled via cholinergic afferents and ATP metabolism.


Assuntos
Giro Denteado , Neurônios , Potenciais de Ação , Animais , Potenciais da Membrana , Camundongos , Técnicas de Patch-Clamp
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...